
Team Number: 40
Advisers: Randall Geiger & Degeng Chen

Team Members/Roles:
Garrett Lies: Embedded Systems - Drone Automation

Drew Underwood: Embedded Systems - Drone Automation

Abdullah Al-Obaidi: Power Systems - Image Processing

Khalifa Aldaheri: Power Systems - Drone Automation

Ahmed Al-Hulayel: Control Systems - Energy Delivery/Landing
Station

Team Email: sdmay18-40@iastate.edu

Team Website: http://sdmay18-40.sd.ece.iastate.edu

Revised: April 23, 2018

Drone Assisted Energy Delivery
FINAL REPORT

PAGE 1

Table of Contents

1 Introduction 3

1.1 3

1.2 3

1.3 3

1.4 4

1.5 4

1.6 5

2. Specifications and Analysis 5

2.1 Error! Bookmark not defined.

2.2 Error! Bookmark not defined.

3. Testing and Implementation 6

3.1 11

3.2 12

3.3 13

3.4 13

4 Closing Material 7

4.1 Conclusion 7

4.2 References 7

4.3 Appendices 7

I. Operations Manual

II. Alternative Designs

III. Other Considerations

IV. Code

Figures

Figure 1. Landing Station

PAGE 2

Figure 2. Old Landing Station

PAGE 3

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to thank our two advisors Dr. Geiger and Dr. Chen as they have

been a huge help throughout the development of this project. Also thank you to our peers

which have given us feedback throughout the past year, and to ETG for helping us with

our hardware.

1.2 PROBLEM AND PROJECT STATEMENT

 There has been an increasing trend in the use of IOT (Internet of Things) devices

and other embedded systems. It may not be feasible to connect these devices to the

power grid, and alternative methods may not be available. To bring energy to these

devices, a new method of delivering energy may be required.

 Our team is working on solving this problem through the use of drone assisted

energy delivery. In the near future it is possible that a large network of drones will be

used to delivery energy to surrounding devices. We will begin working on a simple proof

of concept to bring this idea to life. To accomplish this task we will need to design a

landing station for a drone to establish connection to the device being charged, and we

will need to fully automate the process of the drone flying from one location to the

landing station, charging the device, and returning to its home location.

1.3 OPERATIONAL ENVIRONMENT

 Ideally, the drone should be able to navigate through dynamic environments and

various weather conditions. A final product might use smaller more inexpensive drones,

so that if one is destroyed, the financial loss is minimized. We are focusing on a proof of

concept, and therefore will not be making any requirements about the environment. It is

assumed that the drone should operate in an ideal environment with no obstacles.

PAGE 4

1.4 INTENDED USERS AND USES

 Two broad types of users are intended for the use of this product. The first user

type is a typical consumer. A consumer will have the ability to call a drone for energy

delivery at any given time. The drone then flies to the consumer, charges their electronic

device, and leaves.

 A second type of user is Industry. Industry users will be wanting to delivery energy

to many stationary and non-stationary devices. An industry user may want additional

customizable options to allow more efficient energy delivery, and delivery on a large scale.

Bringing energy delivery to an Industry user will require a large network of drones all

working together.

1.5 ASSUMPTIONS AND LIMITATIONS

This product has no scaling limitations. The end product will be flexible, allowing

for large networks, and various sizes of drones. Power stations for recharging the drone

will be assumed to have connection into the power grid, or some other means of gathering

energy. Each device needing to be charged will require a nearby docking station for the

drone to land on while delivery energy. Due to drone regulations, the use of drone

automated energy delivery must follow all of these regulations. For example, these drones

cannot fly within five miles of an airfield.

Assumptions:

1. The internet of things will expand rapidly: Our project is built on the idea that

the rapid expansion of IoT will continue and nodes will be placed in locations far

away from the power grid.

2. Autonomous Drone flights will be legal: We expect that the US government

will remove the ban on autonomous drone flights in the near future.

3. Drone prices decline: Drone technologies is improving continuously which is

leading to prices dropping steadily. Cheapness of drones makes our project

economically feasible.

PAGE 5

4. Collision avoidance implemented: As stated in the environment section we will

assume drones will be able to avoid collisions in a dynamic environment

5. Drone will be charged at home location: Drone being used in final product

should have a simple way of charging itself at the home station.

Limitations:

1. Weight carrying ability: Our drone can carry a maximum of two extra lbs. This

limits the weight of the additional charging battery the drone can carry, and

therefore the amount of charge which can be delivered.

1.6 EXPECTED END PRODUCT AND DELIVERABLES

 The final end product will consist of a drone which can automatically fly from one

location to another. The drone will be able to land, charge a device, and return to the

original location. The charged device will continue to be powered after the drone leaves

through the use of a battery. In order to accomplish this, a custom docking station will be

built to allow the delivery of energy to the drone and electronic device. Lastly, a proposal

will be made to guide the next group through a list of tasks which will need to be done

next.

 Drone automation: Our drone will need to be able to fly from one location to

another, charge a device, and return home. To accomplish this, we will automate the

takeoff of the drone, flying to the location with GPS, using image processing to accurately

move above the landing station, land the drone, disarm the motors, and then return home

after giving the drone time to charge the device.

 Docking station: The docking station is necessary for the drone to land at the

target device and make a reliable connection to delivery energy. We will need to create a

landing station which the drone can accurately land on, while also establishing a solid

connection between the drone and the device being charged. This may require several

prototypes and exploration into various methods for establishing a reliable connection

between these two devices.

PAGE 6

2. Specifications and Analysis

2.1 PROPOSED DESIGN

Drone Energy Delivery project:

Our project is divided into two categories, programming the drone to go from

point A to B, and charging the device. As a result of knowing what our focuses and

capabilities are, we have divided ourselves into two teams.

Drew and Garrett are the two primarily working on the automation of the drone.

They are responsible for automating the flight, and figuring out how to land the drone

accurately. In order to accomplish this task they will be working closely with the other

team to ensure the solution will work properly.

The other team, composed of Ahmed, Abdullah, and Khalifa, is responsible of figuring

out a way to deliver the energy from the charging portable to the ioT devices. This team

will have to figure out a way to connect reliably to the device. This can be done through

any method, but they must also ensure that the drone is able to disconnect from the

device as well.

Together, our two teams will be working on a solution to deliver energy through

drone assisted energy delivery by presenting the following deliverables: Fully automated

system for flying the drone from point A to point B, landing, taking off, and returning

home. A way to reliably connect to a device in order to deliver energy. And a landing

station which allows the drone to locate and connect to the device. For the demonstration

of this project, we do not require a success rate of 100%. As long as the drone is able to

carry out the mission some percentage of the time, then that is acceptable.

2.2 DESIGN ANALYSIS

 Our team has made a lot of progress on both the landing station and the

automation since first beginning this project. We stuck with two separate teams for a

PAGE 7

while, but as time went on we had to move more members to automation. We were able

to finish the landing station, but the automation is not quite there yet.

 The landing station has gone through several different prototypes. We explored

the possibility of using wireless charging, which we decided was not worth the energy loss.

Our first prototype used multiple conducting magnets to create a connection using

ground as one polarity of the magnet and the input as the other. This worked out fairly

well, but the magnets were too strong for the drone to take off after connection, even with

really small magnets. We instead decided to use a USB charge with a magnetic connector

which is much weaker (Figure 2).

In order to help the drone land on the landing station we have included a larger

landing platform, and a cone to act as a funnel for directing the wire connection coming

from the drone to the device to be charged. This way the drone does not need to land

directly on the target in order to establish a connection. The funnel will guide the wire,

and the magnets will ensure a connection is made. We have also used blue tape to cover

the base of the landing station. This is used by the image processing to locate the

geometric center of the base by filtering for color (Figure 1).

For automation we decided to mainly focus using the Intel recommended library

of Dronekit. Dronekit is python library which abstracts the mavlink messages being sent

from the compute board to the flight controller. We are also using OpenCV library in

python to help us with the image processing. One benefit of using Dronekit is that both

Dronekit and OpenCV utilize python, so communication between the two is easy.

Before we could do anything with the drone we had to go through a long process

of research and installation. We first had to flash the drone to the latest version of the

operating system which was a custom Yocto installation. We then had to flash several

other hardware related pieces such as the flight controller. After this was complete, we

were required to properly calibrate the drone to ensure stable flight. Into our second

semester, Intel released a version of Ubuntu compatible with the drone which we later

flashed to in order to use the camera libraries required for image processing. Each of these

stages had their own difficulties and troubleshooting.

PAGE 8

 Once the system was ready, we were able to begin coding. Automation was a steep

learning curve as no one on our team had previous experience with drones or embedded

systems outside of what was learned in required courses. With a lot of trial and error we

were able to make significant progress on the automation. We began with simple tests

such as arming and disarming the motors. After these were working, we moved onto

taking off and landing, movement by GPS waypoints, and explored the possibility of

movement through velocity settings, as well as yaw pitch and roll settings. Weather

proved to be problematic as we found out many of these tests required GPS in order to

run, otherwise the drone has no sense of location and refused to carry out commands.

 We found out towards the end of our project that the Dronekit library was not

fully supported for the PX4 architecture that our drone was using. This severally limited

our control over the drone, but we were able to find clever workarounds to our problems.

We spent a large amount of time trying to solve these issues as it was too late to learn the

alternative libraries available to us, which also did not interface with the image processing.

As more issues became apparent, it seemed that we would not be able to accomplish the

task due to the dronekit limitations as well as flight stability issues with the drone.

 Abdullah ended up taking over the image processing to ease the burden of the

automation problems. He was able to successfully locate the landing station by filtering

images for objects of a certain size and color. We also came up with an algorithm which

took advantage of our knowledge of the landing station base dimensions to determine

how far away the drone was from the target. All of the image processing had been

completed, tested, and found working. All the image processing coding was done in

Python through a 3rd party library called OpenCv.

 We assigned Ahmed to work on the Landing/charging station and implement a

new and more efficient design by which the wire connection will be ensured. Ahmed

started working on a new idea, which is using the USB wire consisted of magnet. Ahmed

has started learning how to use SolidWorks in order to make a new design for the base by

creating a cone, cylindrical spare with hole in the middle to place the USB male to female,

and a solid base to stabilize it keeping in mind that we need to minimize the budget for

the parts. Then have assembled the parts together and made multiple simple tests to

PAGE 9

ensure that when the drone lands, it will establish a reliable connection. So, to do this,

Ahmed and Abdullah had to pick a color that the camera can reorganize easily in the

image processing. As a result, we had to make the landing station’s color to be Blue

colored. We tested how the camera picks the blue color easily and then find the center

point, it all worked well.

3 Testing and Implementation

 We took an incremental approach to testing as simulation software was often

unreliable for our libraries. This involved running many tests to try and gain an

understanding of the different degrees of freedom in our system. We were then able to

combine our understanding into more complex tests to carry out the automation tasks.

 Testing for the landing station was far simpler. All we needed to do here, was

ensure that a connection was being made by using a simple LED circuit on a breadboard.

We then had to test the probability that the drone would be able to hit the target in order

to make the connection, and whether or not the drone could take off once charging was

complete.

1. Preliminary testing

a. Prep for Takeoff

i. Battery charging and attachment

ii. Stable power supplied for drone, safe connection

iii. Get familiar with remote control, prior to attaching propellers

ensure all systems are stable before any flight takes place.

b. Flight Testing

i. Attach propellers and begin simple testing

ii. Indoor Takeoff/land within a few feet

2. Communication between ground and drone

a. QGroundControl

i. Connect to our drone

ii. Understand proper instruction delivery to drone

PAGE 10

iii. Repeat preliminary flight tests with automated instruction

b. Begin Mission testing

i. Approach automated path guidance via pre-programmed

instruction

ii. Drone will takeoff, reach destination, and then return home

c. Conclude Communications and Preliminary testing

i. Drone can safely takeoff/land

ii. Drone can reach destination and return home

3. Begin sensory testing

a. Real-Sense camera

i. Have a thorough understanding of Real-Sense library and how to

relay proper instruction to drone when necessary

ii. Repeat preliminary flight testing with Real-Sense data flow

iii. Attempt non-hazardous obstacle detection

1. Slowly approach a wall

2. Approach a person

iv. Ensure data feed is reliable and accurate

v. Begin testing of obstacle detection, approach specified target

b. Height, Height of Interest

i. Establish accuracy of height detection

ii. Find limits of height detection within reasonable boundary

iii. Understand how to utilize height of interest for obstacle avoidance

and general landing precautions

c. Conclude Sensory Testing

i. Drone can now safely approach a destination with real-time input

ii. Sensory data feed is accurate, reliable, and understood

4. Battery Attachment

a. Separate battery attached to drone

i. Reliably connected

ii. Does not hinder drone performance

iii. Make adjustments to modified battery life

PAGE 11

1. Fixed battery will bring us close to drone’s max flight weight

iv. Repeat preliminary testing with attached battery

b. Battery fixed connectors

i. Battery needs to be adjusted in such a way that it can attach to a

specified target once the drone arrives

ii. Modify Height of interest and “box” around the drone for in flight

calculations if necessary

iii. Repeat preliminary testing with battery connectors

c. Energy Deliverance

i. Create appropriate destination for energy delivery

ii. Repeat drone sensory testing on our created destination for delivery

iii. Establish accuracy of drone automated guidance. Make

adjustments if necessary

d. Conclude Battery Attachment and energy delivery testing

i. Drone can reach destination accurately with sensory input

ii. Drone and fixed battery can safely land and attach to specified

charging target

iii. Drone can safely remove itself from charging target and return

home

5. (Best Case Scenario) Complete Energy Delivery Automation, proceed to obstacle

avoidance

a. Repeat Preliminary testing with obstacle detection and avoidance on fixed

paths

b. Proceed to moving obstacle detection

c. Conclude obstacle avoidance

3.1 INTERFACE SPECIFICATIONS

Software specifications:

1. QGroundControl - Standard UAV communication tool which allows us to connect

to our drone and issue flight instructions

PAGE 12

2. MavLINK Protocol - Standard air to ground communication protocol for relaying

reliable and secure information

3.2 HARDWARE AND SOFTWARE

Software:

1. RealSense and OpenCV library - RealSense camera on the drone using OpenCV for

image processing to detect landing station

2. Dronekit - Library containing functions which abstract the process of sending

mavlink messages

3. Python - All automation and image processing done in python

Hardware:

1. LiPo Battery - Relatively compact and powerful, can be extremely dangerous if not

handled properly and should be used responsibly

2. Intel Compute Board - brains behind the drone, sends mavlink commands to the

flight controller, handles most of the processing load

3. USB Standard - Used USB connectors throughout the project as a way of

transferring energy to a device

PAGE 13

3.3 PROCESS

 Above is a diagram showing how the work was broken up for this project. This

diagram represents our initial plan, but has been changed slightly throughout our project

lifetime. One change that was mage was the inclusion of image processing as the GPS was

not accurate enough to bring us to our target. There are two clearly defined branches, the

drone and energy branches which various members focused on different branches.

3.4 RESULTS

 We were able to create the landing station without many issues, and are happy

with the final product. The landing station went through several iterations, with the final

design being easily disassembled if necessary. No issues were found in the final design,

although the base could have been a little bit larger to prevent the drone from tipping the

landing station.

PAGE 14

 The image processing software can filter an object of a predefined size and color,

and find its location in 3D space. The location accuracy is accurate within 1-2 cm; the

(0,0,0) location is defined to be the camera location, and the object we are filtering for is

defined in xyz coordinates in cm units.

 Automation has come a long way but is not quite finished. We ran into several

issues, and hit a major roadblock towards the end of the project when it was discovered

that Dronekit could not implement the task properly. This was due to an unknown issue

with the Dronekit library and the PX4 architecture. This limited our ability to control the

drone to only GPS waypoints which were not accurate enough to move the drone directly

over the landing station. We planned a work around which would mimic positional

movements by canceling GPS waypoint commands during mid flight. Unfortunately, we

found out that the process of canceling waypoint commands is not responsive enough and

can be delayed by several seconds. This was too much error to move the drone over the

landing station.

 We also ran into flight stability issues which several other users of our drone have

mentioned to Intel. During flight, our drone is constantly drifting off despite the

calibration being correct. We were unsure if this was due to an error in the controls,

sensors, or balance. This problem was out of our control as we have no access to the

control systems which ensure mavlink commands are carried out successfully.

 Dronekit is currently working on full compatibility with the PX4 architecture, but

the technology is not there yet. We explored several solutions of accomplishing our task,

but without the full compatibility it appears to be impossible to complete successfully. We

still created a finished program which works assuming the stability issues have been fixed.

If we had to repeat this project again, we would have learned the MAVROS library which

would hopefully give us the control and stability that we require.

PAGE 15

4 Closing Material

4.1 CONCLUSION

We were not able to meet all the requirements set out by our advisor, but we have

made significant progress. Our team has been working hard for the past year to solve all of

the issues we have encountered, and managed to create a system which is just shy of

working. Unfortunately our automation hit a brick wall towards the end as limitations

became more visible, and we encountered issues that were beyond our control. It is quite

possible that in a year or two, when Dronekit releases full support for PX4 that our current

tests will actually accomplish the task.

4.2 REFERENCES

[1]"DroneKit by 3D Robotics", DroneKit, 2017. [Online]. Available: http://dronekit.io/.

[Accessed: 05- Dec- 2017].

[2]"intel-aero/meta-intel-aero", GitHub, 2017. [Online]. Available:

https://github.com/intel-aero/meta-intel-aero/wiki. [Accessed: 05- Dec- 2017].

4.3 APPENDICES

I. Operation Manual

 To carry out the final demonstration of our project, or any test for that matter,

there are several steps which need to be followed. These include the proper charging of

the battery, connecting via ssh to the drone, space requirements, preparation, locating and

launching the program, and cancellation of the program if anything goes wrong.

1. Proper Charging of the Battery

PAGE 16

 The battery for our drone is an external LiPo

battery which contains multiple cells. This battery needs

to be fully charged and balanced before use, otherwise a

fire or explosion could occur. Operating when the

battery is below 75% voltage may cause permanent

damage, the drone should not be run for more than 20

minutes of flight before recharging is required.

 In order to charge the battery, connect the LiPo battery to the charger while

plugged into an outlet. Make sure the battery is disconnected from the drone before

charging. The charger contains an LED light to indicate the progress of charging. A solid

red light means the battery is charging, an alternating red and green light means the

battery is balancing, and a solid green light signals the battery is ready to be used. If the

light flashes red, then something is wrong and the battery should be removed. During

charging, the battery should start as solid red, move to alternating red and green, and then

to solid green.

2. Connecting via SSH

 Once the battery is fully charged, the drone can be turned on by pressing the

power button once. To turn off the drone, hold the power button until the power light

flashes. In order to launch the program from a laptop, a connection to the drone must be

established. While on the same wifi as the drone (IASTATE), a connection can be made by

SSH with the following address: sdmay18-40-drone.ece.iastate.edu username: sdmay1840

password: aadgk1840

3. Preparation

 Several preparations must be made before running any code. Some tests can be

run inside without the propellers attached, but if flight is intended, the drone must be

outside in an open area clear of nearby people and obstacles. The propellers can then be

attached by matching the letter on the propeller to the letter on the drone. A tether is

recommended to be attached to the drone incase something goes wrong. In addition, the

PAGE 17

controller should be on and connected to the drone in order to take over if anything

happens. This can be done by turning on the controller while holding down the bind

button. A beep will indicate that the controller is connected successfully. It may help to

try and use the controller to ensure that it is connected before running any programs.

4. Launching the Program

 In order to launch the program, locate the file by accessing the Desktop directory,

sdmay1840 folder, and the our tests folder. There are several other directories containing

all of our tests. The final test is located in the final tests directory and named

test6_final.py. This program can be launched by typing the command python

test6_final.py into the terminal.

5. Cancellation

 In the event that something goes wrong during the test, the program can be

canceled by hitting ctrl C in the terminal. This will cause the program to stop, with the

drone maintaining the state that it was last in. From this point on, control can be passed

over to the remote controller.

II. Alternative Designs

 Throughout the progress of our project we have came up with several alternative

designs. The landing station initially was designed to use conducting magnets as a way to

move current to the charging device. We found that even for the smallest magnets we

could acquire, the drone was not able to overcome the force of the magnets during

takeoff.

 We also explored several different solutions for automation. We first planned on

using the Dronekit library to complete our project, but towards the end of the project we

also expanded into using mavros. Mavros was too complicated and low level to get a good

enough grasp on within the limited time frame, and so we did not pursue it too far. We

also came up with, implemented, and tested several different ways of accomplishing the

automation task in Dronekit.

PAGE 18

 The final method we were forced into was the use of GPS waypoints. We also

explored the possibility of controlling the drone through velocity commands as well as

yaw pitch and roll. Through our testing we found that the drone had no response to the

commands. With further research it was discovered that these commands were not

supported on our drone’s architecture.

III. Other Considerations

 I hope that it is clear that our team has worked extremely hard on this project

from start to finish. We have put in many hours, and solved many unseen issues. Although

the project did not meet the requirements given by our advisors, we do believe that we

have done the best job that we could have given our choice in drone and libraries. If given

another chance, we would have explored an entirely new approach with our newfound

knowledge. We would also likely work with a drone such as DJI which we know has a

guaranteed working library.

IV. Code

 All of the code can be found on our senior design team’s github, but we will also

include the final demonstration code as well.

##
##################
For this test the drone should fly 5 meters up, 10 meters north, 10 meters east (Target location)
The drone will then look for the landing station using Abdullas image processing
The drone will then take several small movements until it is above the landing station
the drone will then land and disarm
after 20 seconds, the drone will rearm and return home
##
##################
https://github.com/PX4/Firmware/blob/master/Tools/mavlink_px4.py

Import DroneKit-Python
from dronekit import connect, Command, LocationGlobal
from pymavlink import mavutil

PAGE 19

Image Processing
import cv2
import numpy as np
import imutils
import math

def create_mask(color, image) :
 #green mask
 green_min = np.array([45,50,50])
 green_max=np.array([75,255,255])

 #blue mask
 blue_min = np.array([100,100,100])
 blue_max=np.array([120,255,255])

 if color == "blue":
 mask_min = blue_min
 mask_max = blue_max
 elif color == "green":
 mask_min = green_min
 mask_max = green_max

 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
 mask = cv2.inRange(hsv, mask_min, mask_max)
 masked_image = cv2.bitwise_and(image , image , mask = mask)
 return masked_image

def find_centroid (mask, original, obj_width, focalLength):
 gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
 blurred = cv2.GaussianBlur(gray, (5,5), 0)
 thresh = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]
 cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
 cnts = cnts[0] if imutils.is_cv2() else cnts[1]
 for c in cnts:
 area = cv2.contourArea(c)
 marker = cv2.minAreaRect(c)
 dis = find_distance(obj_width, focalLength, marker[1][0])
 M = cv2.moments(c)
 cX = int(M["m10"]/(M["m00"]+0.0001))
 cY = int(M["m01"]/(M["m00"]+0.0001))
 x,y = find_pos_diff(cX,cY, 320,240, focalLength, dis)
 if area > 500 :

PAGE 20

 if (300 < cX < 350) & (220 < cY < 260) :
 cv2.rectangle(original, (0,0) , (30,30) , (0,255,0), -1)

 cv2.drawContours(original, [c], -1, (0,255,0), 2)
 cv2.circle(original, (cX, cY), 7 , (255,255,255), -1)
 cv2.line(original, (cX, cY), (320,240), (0,0,255), 2)
 cv2.putText(original, "Target location : (%.2f cm, %.2f cm, %.2f cm) " % (x,y,dis),
(0,50), 1, 1, (0,0,255))
 return mask, original

def find_pos_diff (cX, cY, dX, dY, focal_length, distance):
 pX = cX - dX
 pY = dY - cY
 x = (pX * distance)/focal_length
 y = (pY * distance)/focal_length
 return x,y

def find_distance(fixed_width, focalLength, perWidth):
 return(fixed_width * focalLength)/ (perWidth +0.0001)

Basic code
import time, sys, argparse, math

##
##################
Settings
##
##################

connection_string = 'tcp:127.0.0.1:5760'
MAV_MODE_AUTO = 4

##
##################
Init
##
##################

Connect to the Vehicle
print "Connecting"
vehicle = connect(connection_string, wait_ready=False)

def PX4setMode(mavMode):
 vehicle._master.mav.command_long_send(vehicle._master.target_system,
vehicle._master.target_component,
 mavutil.mavlink.MAV_CMD_DO_SET_MODE, 0,
 mavMode,
 0, 0, 0, 0, 0, 0)

PAGE 21

def get_location_offset_meters(original_location, dNorth, dEast, alt):
 """
 Returns a LocationGlobal object containing the latitude/longitude `dNorth` and `dEast` metres
from the
 specified `original_location`. The returned Location adds the entered `alt` value to the altitude
of the `original_location`.
 The function is useful when you want to move the vehicle around specifying locations relative to
 the current vehicle position.
 The algorithm is relatively accurate over small distances (10m within 1km) except close to the
poles.
 For more information see:
 http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-latitude-longitude-by-
some-amount-of-meters
 """
 earth_radius=6378137.0 #Radius of "spherical" earth
 #Coordinate offsets in radians
 dLat = dNorth/earth_radius
 dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180))

 #New position in decimal degrees
 newlat = original_location.lat + (dLat * 180/math.pi)
 newlon = original_location.lon + (dLon * 180/math.pi)
 return LocationGlobal(newlat, newlon,original_location.alt+alt)

##
##################
Listeners
##
##################

home_position_set = False

#Create a message listener for home position fix
@vehicle.on_message('HOME_POSITION')
def listener(self, name, home_position):
 global home_position_set
 home_position_set = True

##
##################
Start mission example
##

PAGE 22

##################

wait for a home position lock
check test2_home_location.py for alternative way to get home position
while not home_position_set:
 print "Waiting for home position..."
 time.sleep(1)

Display basic vehicle state
print " Type: %s" % vehicle._vehicle_type
print " Armed: %s" % vehicle.armed
print " System status: %s" % vehicle.system_status.state
print " GPS: %s" % vehicle.gps_0
print " Alt: %s" % vehicle.location.global_relative_frame.alt

Change to AUTO mode
PX4setMode(MAV_MODE_AUTO)
time.sleep(1)

Load commands
might give us issues
cmds = vehicle.commands
cmds.clear()

home = vehicle.location.global_relative_frame

takeoff to 5 meters
might need to increase this, maybe 10?
wp = get_location_offset_meters(home, 0, 0, 5);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

move 10 meters north
wp = get_location_offset_meters(wp, 10, 0, 0);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

move 10 meters east
wp = get_location_offset_meters(wp, 0, 10, 0);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

#Arm motors
while not vehicle.armed:
 print "waiting for arming, armable = %s" % vehicle.armable
 vehicle.armed = True
 time.sleep(1)

PAGE 23

time.sleep(3)

Upload mission
print "uploading missions"
cmds.upload()
time.sleep(1)

monitor mission execution
nextwaypoint = vehicle.commands.next
while nextwaypoint < len(vehicle.commands):
 if vehicle.commands.next > nextwaypoint:
 display_seq = vehicle.commands.next+1
 print "Moving to waypoint %s" % display_seq
 nextwaypoint = vehicle.commands.next
 time.sleep(1)

Should be near landing station, find center of station and move towards it
Will need to be changed once calibrated
pos = find_location("blue")
startX = pos[0]
startY = pos[1]
xComplete = False
yComplete = False

Desired distance
wp = get_location_offset_meters(wp, startY, startX, 0);

#loop until done
while xComplete == False && yComplete == False:
 print "Going to landing station"
 cmds.clear()
 if xComplete == False
 #Find direction to move west/east
 if startX > 0
 #Move east
 wp2 = get_location_offset_meters(wp, 0, 10, 0);
 cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp2.lat, wp2.lon, wp2.alt)
 cmds.add(cmd)
 else
 #Move west
 wp2 = get_location_offset_meters(wp, 0, -10, 0);
 cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp2.lat, wp2.lon, wp2.alt)
 cmds.add(cmd)
 if yComplete == False
 #Find direction to move north/south
 if startY > 0
 #Move north
 wp2 = get_location_offset_meters(wp, 10, 0, 0);
 cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

PAGE 24

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp2.lat, wp2.lon, wp2.alt)
 cmds.add(cmd)
 else
 #Move south
 wp2 = get_location_offset_meters(wp, -10, 0, 0);
 cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp2.lat, wp2.lon, wp2.alt)
 cmds.add(cmd)
 #Goto desired
 cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
 cmds.add(cmd)

 #Upload the commands
 cmds.upload()
 time.sleep(0.3)

 #go to next command
 vehicle.commands.next = vehicle.commands.next + 1
 if xComplete == False && yComplete == False
 time.sleep(0.3)
 vehicle.commands.next = vehicle.commands.next + 1

 #Check if we reached the destination
 pos2 = find_location("blue")
 if startX > 0
 if pos2[0] < 0
 xComplete = True
 else
 xComplete = False
 else
 if pos2[0] > 0
 xComplete = True
 else
 xComplete = False
 if startY > 0
 if pos2[1] < 0
 yComplete = True
 else
 yComplete = False
 else
 if pos2[1] > 0
 yComplete = True
 else
 yComplete = False

#Land
cmds.clear()
wp = get_location_offset_meters(wp, 0, 0, 5);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_LAND, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)

PAGE 25

cmds.add(cmd)
cmds.upload()
time.sleep(1)

wait for the vehicle to land
while vehicle.commands.next > 0:
 print "waiting for landing"
 time.sleep(1)

Disarm vehicle
print ("disarming")
vehicle.armed = False
time.sleep(1)

#Charge for 20 seconds
time.sleep(20)

Attempt to return home, get cmds, clear them, retrace steps, and upload
Load commands
might give us issues
cmds.clear()

takeoff to 5 meters
might need to increase this, maybe 10?
wp = get_location_offset_meters(wp, 0, 0, 5);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

move 10 meters west
wp = get_location_offset_meters(wp, 0, -10, 0);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

move 10 meters south
wp = get_location_offset_meters(wp, -10, 0, 0);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

land
wp = get_location_offset_meters(wp, 0, 0, 5);
cmd = Command(0,0,0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_LAND, 0, 1, 0, 0, 0, 0, wp.lat, wp.lon, wp.alt)
cmds.add(cmd)

#Arm motors
while not vehicle.armed:
 print "waiting for arming, armable = %s" % vehicle.armable
 vehicle.armed = True

PAGE 26

 time.sleep(1)

Upload mission
print "uploading missions"
cmds.upload()
time.sleep(1)

monitor mission execution
nextwaypoint = vehicle.commands.next
while nextwaypoint < len(vehicle.commands):
 if vehicle.commands.next > nextwaypoint:
 display_seq = vehicle.commands.next+1
 print "Moving to waypoint %s" % display_seq
 nextwaypoint = vehicle.commands.next
 time.sleep(1)

wait for the vehicle to land
while vehicle.commands.next > 0:
 print "waiting for landing"
 time.sleep(1)

Disarm vehicle
print "disarming"
vehicle.armed = False
time.sleep(5)

Close vehicle object before exiting script
print "complete"
vehicle.close()
time.sleep(1)

